— Quick

tant que (SOURCE<>"}

Start

v F

lire SOURCE

Guide!

Structorizer© is a free open-source editor Author: Praveen Kumar
for Nassi-Shneiderman diagrams, written by Revised: Kay Gilrtzig
Robert Fisch (https://structorizer.fisch.lu) Edition: 2021-09-22

Contents
[} d e Ye [§ Lot o) o FUEERE TR

QUUICK STAIT eeieeie ettt s e st ee s abe e sabeesate e s taessbaeesabeesbaeesusaesabeeensseanssaeesseesaseenns
[=TT 1 o= USSP
(60e] 1] 4 1 T=] o) K PP P UPPPPPPPPPP
S T 0 g Tl o Y=Y [=Tox o] o PRSP
1T 1= ol g Y=Y o d o o OO UPT PP
Y T2V o =g o1 1T 0 1= o £ PPN
oy LT =T o Tol LTS PPPPTPPPOP

SErUCTUIE PrEf@I@NCES. ...uviietie ettt ettt e e e e et e e st eeeate e snseesnsaeesnseesneeenns

Y BT e =] =T T o o] Y SR PSPR
DT T=4 =T 4 T 2=
(070 (o 101 oV~ ST
F A F=do T 1 o g T =5 o Lo AU

o 108 0TI =) o o o

(0o o LI 4 0 To] o ST SURRNE
(0o To [N [o1 o Yo o ¥R PR

Advanced Features (EXaMPIES)ueiiciiiiieiiee ettt e et e et e e et ae e e e ere e e e e et ae e e e ere e e e e nanees

1 Please consult the User Guide (https://help.structorizer.fisch.lu) for a detailed description of the product.

Introduction

Many programmers first design their algorithms as a graphical flow chart, which helps visualizing the
code flow, before actually starting to write the code, particularly for new and complex tasks.

All algorithms can be composed using the following basic constructs:

1. Operations (Activities)
2. Decisions
3. Iterations (Loops)

The traditional “unstructured” flow charts (in Germany named “Programmablaufplan” or “PAP”, as
standardized by DIN 66001) form a graph of nodes and directed links (arrows). The above mentioned
basic components are expressed as follows:

Operations Decision Loop (example < 1982) Loop (example > 1982)
[]
?
T F F T
l’ 4
T

A 4 A

T)

The major disadvantages of these flowcharts are:

1. The arrows take a lot of space

2. Some of the basic algorithm structures are composed of several nodes and links that may be
distorted and displaced in many ways, making a recognition of structures difficult.

3. ltis very difficult to convert flowcharts of this kind into programming code.

4. Structural consistency is hard to check.

5. Nested loops with the symbolism of DIN 66001/1982 give poor overview as their correspond-
ing pairs of start and end nodes must be matched by counting along the apparently linear flow.

Structured flowcharts as introduced by Isaac NAssI and Ben SHNEIDERMAN (so called structograms,
standardized in Germany with DIN 66261), in contrast, are very compact, unambiguous and easy to
convert into code. Their characteristics are:

e The control flow passes through the elements from top to bottom (no need for arrows).
e The branches of a decision re-join necessarily at its end.
e Every loop has a single exit point.

Operations Decision Iteration (Loop)

7

Quick Start

Structorizer is a fairly sophisticated editor for NASSI-SHNEIDERMAN diagrams (structured flowcharts).

Structorizer 3.31-03

~ R NER AxdgNE OO0
[IMEECLSINEOE COCOOC®CO000® FiE
W B N

i@

File Edit Diagram Preferences Debug Help
eE B &l

<

Manual

Try F1to see the manual in the browser

N

‘bl{I'FUT "Hello world!", date

) Toolbar
" Menu o

— Waork area

Tabbed
info pane

\Analysm warning marker

Report list

- | =

=t ﬂ‘]

-8 Test: D:\FHE\Lehr
[0 dateSinceJesus(1
[0 daysBetween(2):
[daysInManth{2): |
[0 daysSincelesus(1
-[B] isLeapYear(1): D:

I T ietaliAn bl T T
£ >

[0 Datecalculation.ar -

———

arranger index Code preview

The variable «dates has not yet been initialized! -

The dialog language can be chosen among a broad set of idioms:

s | mlun[SS[= @0 8] e -]

Heading
When you start Structorizer, it shows an empty diagram (see right-hand side).

LEE
Double-click its outer rectangle (containing the “???” label) in order to give your o

diagram a descriptive name. This will open the diagram editor:

5

Edit Main program

Diagramname / function signature

\

MY _PROGRAM

Comment

We have named this diagram "MY_PROGRAM" though this is a dull name.

| Aftributes | |

Diagrams to be included (0) j

l

Cancel

Comments
The comment for the diagram (or its elements) can be shown in different ways:

1. Together with the text but in smaller font (mode “Text + Comments”, see menu “Diagram”)

e nave named is diagram "MY_PROGRAM™ hough s 15 3 dull name

MY_PROGRAM

2. lts existence marked by a grey bar at the left edge and popping up while the Mouse hovers
over the element (mode “Show comments?”, see menu “Diagram”):

MY_PROGRAM

&

il

We have named this diagram MY _PROGRAM™ though this is a dull name.

3. Shown instead of the element text (conversely, the text may be popped up on demand) with
mode “Switch texts/comments?”, see menu “Diagram”:

We have named this diagram "MY_PROGRAM" though this is a dull name.

¥

L]

¥

MY _PROGRAM

4. Completely hidden (none of the modes mentioned above).

Element Selection
Before inserting elements, we first select the place where the insertion is
intended. This is done by clicking on the closest element. At the beginning there

is only the empty box with the symbol J in it. Select it by clicking once on it.
It will get highlighted (in bright yellow, see screenshot to the right):

Element Insertion
Ten standard element types (and a non-standard extra type “TRY”) are now available for insertion:

MY_PROGRAM

&

Mdl [FOR TRY

A i [O 1K] b [&

Ref. No. 1 2 3 4 5 6 7 8 9 10 11
Hot key F5 F6 F10 F7 F8 F9 Ctrl | F11 | F12 | Ctrl | Ctrl
F7 F6 F5

The symbols show the approximate shape of the respective element types. Their meaning is:

1. Instruction (e.g. Assignment, Input, or Output)

IF THEN ELSE Statement (Alternative)

Decision (Branching)
CASE Statement (Case Selection)

w N

FOR Loop (Count-controlled or Collection-controlled)

WHILE Loop (Condition-controlled at start, entry-controlled)
REPEAT UNTIL Loop (Condition-controlled at end, exit-controlled)
Endless Loop (neither entry nor exit control)

Iteration (Loops)

Nowu s

8. CALL a subroutine (function or procedure, i.e. another diagram)
9. EXIT Statement (break/leave, return, exit)

10. PARALLEL section

11. TRY CATCH FINALLY block (exception control, non-standard)

Clicking on one of the symbols (or pressing the respective function key combination shown in the table
above) will insert an element of the chosen type after the selected element. If you want it to be
inserted before the selected element then hold the Shift key pressed while you click on the toolbar
button or press the function key combination.

When the element editor opens (it looks similar to that shown in section MY PROGRAM
“Heading”), fill in the requested text content and possibly some helpful comment. -

After having selecting e.g. symbol 2 and filled in a condition as requested, say a=<10
a < 10, the diagram might look like this: i[; F

] o]

Moving Elements

To move a misplaced element to another position you may click on the element

and drag it with the mouse to the target position. A valid move is highlighted in green, whereas an
invalid position is highlighted in red. Note that the dragged element will plop in after the highlighted
target position, unless you hold the Shift key down on releasing the mouse button — then it will fall
before the selected target element.

Another way to move an element to neighbouring positions is to use the cursor keys while you keep
the “Ctrl” key pressed.

Or you may cut and paste elements or contiguous element sequences via the usual key combinations.

Preferences

Structure Preferences

The labels for the branches of an Alternative (IF THEN ELSE statement, see previous screenshot) may
be configured as required via menu item “Preferences”>"Structures...”. You may also specify the ed-
itor default texts for the respective kinds of element to be filled in when you insert a new element.

If you choose to place some “decorative” sort of keyword in the default text, e.g. “until ()” fora
REPEAT loop, then it will usually be a good idea to specify this very decorative keyword as to be ignored
by Structorizer for the respective element type in the “Parser Preferences” (see further below), too.

@ Structure Preferences

Default content
?

|| Enlarge FALSE

IF statement Diagram Header
Label TRUE ETT)] ——
T F Included diagrams:

FOR loop
Default content

fork=-01t09

CASE statement

Default content

[] REPEAT loop
?) ;
|
: Default content
default . until (73

WHILE loop

Default contant

-;Nhile (?)

TRY block labels
Min. branches for rotation 5 |ﬂ Try Catch Finally
(/] Use dedicated editor for CASE elements try catch finally

oK |

Parser Preferences

There are no particular element types for input and output.
Instead you are to use ordinary Instruction elements. If
Structorizer shall identify (and interpret) input and output
instructions, however, then you ought to specify suited key-
words according to your personal preference. The same
holds for EXIT elements (which may have different meaning)
and with respect to a correct interpretation of FOR loops.

This configuration can be done via menu item
“Preferences”>"Parser...” (see following screenshot). The
keywords necessary for correct interpretation of elements on
execution in the debugger as well as on code export and code
preview have a yellowish field background. The remaining
fields are optional and simply allow to specify, which
“decorative” keywords (as mentioned in section “Structure
Preferences” above) are to be tolerated and ignored on

execution and code export.

Diagram Size

Parser Preferences

IF statement
CASE statement

FOR-TO loop

FOR-IN loop
WHILE loop
REPEAT loop

EXIT statement

O Fields with this backaround are mandatory
Pre Fost
i
case
far 1 .t.o
Step separator .step
foreach 1 .i.n
while
until
leave from loop(s)
return from routine
exit from program
throw an errar
Input Cutput
IMPUT .CUTF'UT

I/ instructions

] 1gnore case

Fetch locale-specific defaults |

| OK |

The size of the flowchart can be changed via the font size. You may enlarge or diminish the

diagram font by clicking on the following toolbar buttons:

Colouring

The element background (while not selected) is by default white. In order to emphasize or distinguish
certain parts of the algorithm you can change the fill colour of the selected elements by clicking on the
appropriate paint box button in the toolbar (the palette is completely customizable):

Oj@0O0|0/®0 0@ e

Algorithm Export

Picture export
The diagram may be exported as picture to the following formats:

iel Edit Diagram Preferences Debug Help
[0 New Sitrg-N '
& save Shg-5
E? saveas..
fig) save ANl
= Open... Strg-O

(= Open Recent File b

-

1

0

+Umschalt-S

[

(¢ import 3
&' Export ¥ [Picture »| [F] PNG ... stgE
53 Export as Pascal | Delphi code Stp-Ur=ch=ix | 53 Code | [F] PNG (multiple) ..

¢4 Print .. Shg-F [EwF ..

mArrange B SVVF ...

[=] PDF ...

[=] SVG ...

E} Inspect attributes ... Alt-Eingabe

e Tranelatar

You may also copy the current diagram as PNG or JPG picture (system-dependent) to the clipboard by
pressing Ctrl-D.

Code export Eﬁ| Edit Diagram Preferences Debug Help
H . New trg-1
Already while you work on a dia- ES)
dave
gram, you will see a code preview in | & saye s
the right part of the window. You | @ savean
may easily change the target lan- |(= Open.. Lal
guage via the context menu of the | @ OpenRecentFile '
. L4 3
code preview pane. L knpert
@ Export ¥ [Picture ¥ |
Via the menu you have the oppor- %3 Export as Pascal | Delphi code Sto+Umsch=ix | 58 Code Pl 53 Pascal / Delphi
) . = = %3 Oberon
tunity to export your algorithm to a | & Print.- i -ﬁ?
fil [Arrange 3 StrukTeX
source file: =
E inspect attributes ... AlEingabe e e
% 53 ksh
Translator ... -‘=|§ faci
= Quit Stp-Q S
B
5 Cer
@ Java
'*:'& Javascript
53 PHP
%3 Pytnon
'°‘='§ Basic

_Hleigdit Diagram Preferences Debug Help

Code Import

[new
For certain programming lan- B save
guages (by now Pascal, C, [saveas..
COBOL, and Processing) code @ saveAn

can directly be imported to = 2P _
. . [z Open Recent File b
obtain structured flowcharts (i.e.
¢ import » 53 Source Code.. Strg+Umechalt|

NASSI-SHNEIDERMAN diagrams). By ¢y port

the name extension of the %3 exportas PascallDelphicode sto:lmsshai

* [struktogrammeditor
ﬁ hus-Struktogrammer

chosen source file Structorizer

will automatically decide what parser to use. In case of doubt Structorizer will ask you. Alternatively,

you may choose among the file filters in the file chooser dialog:

Code import - choose source file (mind the file filter) ...
Suchen jn: | [E5 Issues33_FreePascalimport v | @ @) &) E || &l |
| [Oberon2Pascal [kprTestTestUnit nad [kprTestUnit ppu

[RandomNumbers | kprTestUnito [kprTestUnit_mC.pas
[p.crg [kprTestUnitpas [kprTestunit_mC.pag
_ fp__ .emr _ kprTestUnit pas.log _ I-:prTestUnit_mC.pas{
; fp___.out _ kprTestUnit pas parsetree tit __ M .pas
KIS J Yo
Dateiname:
Dateityp: [Alle Dateien v
Alle Dateien
Pascal Source Files
AMESI-CA9 Source Files

Advanced Features (Examples)
o A built-in debugger allows you to test your algorithm by interpreting the diagram directly. You can

1
i

&

do a step test and may place breakpoints. Current variable contents are shown. You may perform
a qualitative runtime analysis having Structorizer count the execution passages of each element
and display the diagram in an execution-count-related colour spectrum.

“Turtleizer”: Structorizer provides some built-in turtle drawing commands useful for teaching and
learning how to program. A special debug environment allows to interpret them and draw the re-
sulting turtle images. The Turtleizer GUI offers opportunities to zoom and to measure positions,
distances, and angles in with the mouse in the drawing.

Structorizer facilitates the decomposition of complex algorithms into several subroutines by offer-
ing to extract a selected instruction sequence into a subroutine diagram. Or it may help creating a
subroutine diagram for an inserted CALL element without corresponding target.

“Arranger”: Rather than holding the opened diagrams in a mere tab list or the like, Structorizer
allows you to place (“arrange”) them together on a drawing canvas according to your wishes. This
is where e.g. the subroutine diagrams for a main diagram you work on should reside and wait for
being called. You can organize the arranged diagrams in groups (similar to “projects” in many IDEs).

Find & Replace: A dedicated search tool allows you to do a selective search for words or substrings,
possibly via regular expressions, within the current diagram or all opened diagrams, restricting the
search to certain subsets of element types, to the element texts or comments, and to replace them
if needed. This may be a grand help on revising or refactoring the diagrams.

