

Quick
Start

Guide1
Structorizer© is a free open-source editor
for Nassi-Shneiderman diagrams, written by
Robert Fisch (https://structorizer.fisch.lu)

 Author: Praveen Kumar
 Revised: Kay Gürtzig
 Edition: 2021-09-22

Contents
Introduction ... 2

Quick Start ... 3

Heading.. 3

Comments ... 4

Element Selection .. 4

Element Insertion .. 4

Moving Elements ... 5

Preferences .. 5

Structure Preferences.. 5

Parser Preferences .. 6

Diagram Size .. 6

Colouring ... 7

Algorithm Export ... 7

Picture export .. 7

Code export ... 7

Code Import ... 8

Advanced Features (Examples) ... 8

1 Please consult the User Guide (https://help.structorizer.fisch.lu) for a detailed description of the product.

©

Introduction
Many programmers first design their algorithms as a graphical flow chart, which helps visualizing the
code flow, before actually starting to write the code, particularly for new and complex tasks.

All algorithms can be composed using the following basic constructs:

1. Operations (Activities)
2. Decisions
3. Iterations (Loops)

The traditional “unstructured” flow charts (in Germany named “Programmablaufplan” or “PAP”, as
standardized by DIN 66001) form a graph of nodes and directed links (arrows). The above mentioned
basic components are expressed as follows:

Operations Decision Loop (example < 1982) Loop (example 1982)

The major disadvantages of these flowcharts are:

1. The arrows take a lot of space
2. Some of the basic algorithm structures are composed of several nodes and links that may be

distorted and displaced in many ways, making a recognition of structures difficult.
3. It is very difficult to convert flowcharts of this kind into programming code.
4. Structural consistency is hard to check.
5. Nested loops with the symbolism of DIN 66001/1982 give poor overview as their correspond-

ing pairs of start and end nodes must be matched by counting along the apparently linear flow.

Structured flowcharts as introduced by Isaac NASSI and Ben SHNEIDERMAN (so called structograms,
standardized in Germany with DIN 66261), in contrast, are very compact, unambiguous and easy to
convert into code. Their characteristics are:

 The control flow passes through the elements from top to bottom (no need for arrows).
 The branches of a decision re-join necessarily at its end.
 Every loop has a single exit point.

Operations Decision Iteration (Loop)

? ?

?
T F F

T

Quick Start
Structorizer is a fairly sophisticated editor for NASSI-SHNEIDERMAN diagrams (structured flowcharts).

The dialog language can be chosen among a broad set of idioms:

Heading
When you start Structorizer, it shows an empty diagram (see right-hand side).

Double-click its outer rectangle (containing the “???” label) in order to give your
diagram a descriptive name. This will open the diagram editor:

Comments
The comment for the diagram (or its elements) can be shown in different ways:

1. Together with the text but in smaller font (mode “Text + Comments”, see menu “Diagram”)

2. Its existence marked by a grey bar at the left edge and popping up while the Mouse hovers

over the element (mode “Show comments?”, see menu “Diagram”):

3. Shown instead of the element text (conversely, the text may be popped up on demand) with

mode “Switch texts/comments?”, see menu “Diagram”:

4. Completely hidden (none of the modes mentioned above).

Element Selection
Before inserting elements, we first select the place where the insertion is
intended. This is done by clicking on the closest element. At the beginning there
is only the empty box with the symbol in it. Select it by clicking once on it.
It will get highlighted (in bright yellow, see screenshot to the right):

Element Insertion
Ten standard element types (and a non-standard extra type “TRY”) are now available for insertion:

Ref. No. 1 2 3 4 5 6 7 8 9 10 11

Hot key F5 F6 F10 F7 F8 F9 Ctrl
F7

F11 F12 Ctrl
F6

Ctrl
F5

The symbols show the approximate shape of the respective element types. Their meaning is:

1. Instruction (e.g. Assignment, Input, or Output)

2. IF THEN ELSE Statement (Alternative)
3. CASE Statement (Case Selection)

4. FOR Loop (Count-controlled or Collection-controlled)
5. WHILE Loop (Condition-controlled at start, entry-controlled)
6. REPEAT UNTIL Loop (Condition-controlled at end, exit-controlled)
7. Endless Loop (neither entry nor exit control)

8. CALL a subroutine (function or procedure, i.e. another diagram)
9. EXIT Statement (break/leave, return, exit)
10. PARALLEL section
11. TRY CATCH FINALLY block (exception control, non-standard)

Clicking on one of the symbols (or pressing the respective function key combination shown in the table
above) will insert an element of the chosen type after the selected element. If you want it to be
inserted before the selected element then hold the Shift key pressed while you click on the toolbar
button or press the function key combination.

When the element editor opens (it looks similar to that shown in section
“Heading”), fill in the requested text content and possibly some helpful comment.

After having selecting e.g. symbol 2 and filled in a condition as requested, say
a < 10, the diagram might look like this:

Moving Elements
To move a misplaced element to another position you may click on the element
and drag it with the mouse to the target position. A valid move is highlighted in green, whereas an
invalid position is highlighted in red. Note that the dragged element will plop in after the highlighted
target position, unless you hold the Shift key down on releasing the mouse button – then it will fall
before the selected target element.

Another way to move an element to neighbouring positions is to use the cursor keys while you keep
the “Ctrl” key pressed.

Or you may cut and paste elements or contiguous element sequences via the usual key combinations.

Preferences
Structure Preferences
The labels for the branches of an Alternative (IF THEN ELSE statement, see previous screenshot) may
be configured as required via menu item “Preferences””Structures…”. You may also specify the ed-
itor default texts for the respective kinds of element to be filled in when you insert a new element.

If you choose to place some “decorative” sort of keyword in the default text, e.g. “until ()” for a
REPEAT loop, then it will usually be a good idea to specify this very decorative keyword as to be ignored
by Structorizer for the respective element type in the “Parser Preferences” (see further below), too.

Decision (Branching)

Iteration (Loops)

Parser Preferences
There are no particular element types for input and output.
Instead you are to use ordinary Instruction elements. If
Structorizer shall identify (and interpret) input and output
instructions, however, then you ought to specify suited key-
words according to your personal preference. The same
holds for EXIT elements (which may have different meaning)
and with respect to a correct interpretation of FOR loops.

This configuration can be done via menu item
“Preferences””Parser…” (see following screenshot). The
keywords necessary for correct interpretation of elements on
execution in the debugger as well as on code export and code
preview have a yellowish field background. The remaining
fields are optional and simply allow to specify, which
“decorative” keywords (as mentioned in section “Structure
Preferences” above) are to be tolerated and ignored on
execution and code export.

Diagram Size
The size of the flowchart can be changed via the font size. You may enlarge or diminish the
diagram font by clicking on the following toolbar buttons:

Colouring
The element background (while not selected) is by default white. In order to emphasize or distinguish
certain parts of the algorithm you can change the fill colour of the selected elements by clicking on the
appropriate paint box button in the toolbar (the palette is completely customizable):

Algorithm Export
Picture export
The diagram may be exported as picture to the following formats:

You may also copy the current diagram as PNG or JPG picture (system-dependent) to the clipboard by
pressing Ctrl-D.

Code export
Already while you work on a dia-
gram, you will see a code preview in
the right part of the window. You
may easily change the target lan-
guage via the context menu of the
code preview pane.

Via the menu you have the oppor-
tunity to export your algorithm to a
source file:

Code Import
For certain programming lan-
guages (by now Pascal, C,
COBOL, and Processing) code
can directly be imported to
obtain structured flowcharts (i.e.
NASSI-SHNEIDERMAN diagrams). By
the name extension of the
chosen source file Structorizer
will automatically decide what parser to use. In case of doubt Structorizer will ask you. Alternatively,
you may choose among the file filters in the file chooser dialog:

Advanced Features (Examples)
 A built-in debugger allows you to test your algorithm by interpreting the diagram directly. You can
do a step test and may place breakpoints. Current variable contents are shown. You may perform
a qualitative runtime analysis having Structorizer count the execution passages of each element
and display the diagram in an execution-count-related colour spectrum.

 “Turtleizer”: Structorizer provides some built-in turtle drawing commands useful for teaching and
learning how to program. A special debug environment allows to interpret them and draw the re-
sulting turtle images. The Turtleizer GUI offers opportunities to zoom and to measure positions,
distances, and angles in with the mouse in the drawing.

 Structorizer facilitates the decomposition of complex algorithms into several subroutines by offer-
ing to extract a selected instruction sequence into a subroutine diagram. Or it may help creating a
subroutine diagram for an inserted CALL element without corresponding target.

 “Arranger”: Rather than holding the opened diagrams in a mere tab list or the like, Structorizer
allows you to place (“arrange”) them together on a drawing canvas according to your wishes. This
is where e.g. the subroutine diagrams for a main diagram you work on should reside and wait for
being called. You can organize the arranged diagrams in groups (similar to “projects” in many IDEs).

 Find & Replace: A dedicated search tool allows you to do a selective search for words or substrings,
possibly via regular expressions, within the current diagram or all opened diagrams, restricting the
search to certain subsets of element types, to the element texts or comments, and to replace them
if needed. This may be a grand help on revising or refactoring the diagrams.

